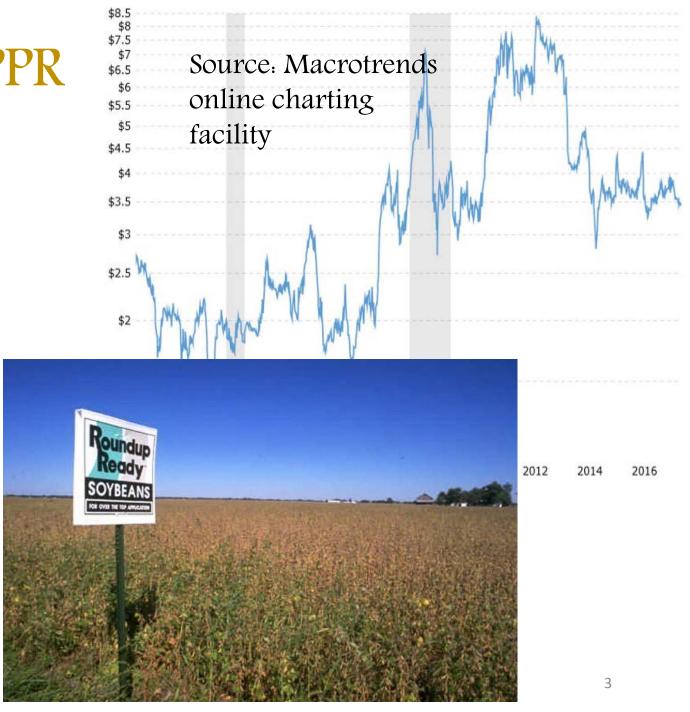

Farmers' Motivations for Land Conversion in the Prairie Pothole Region of North and South Dakota

Mary Doidge, Hongli Feng, David A. Hennessy
Dept. of Agricultural, Food & Resource Economics
Michigan State University,
with acknowledgements to 2014 NIFA grant & team,
Climate Science Center grant & team, Elton Smith Endowment

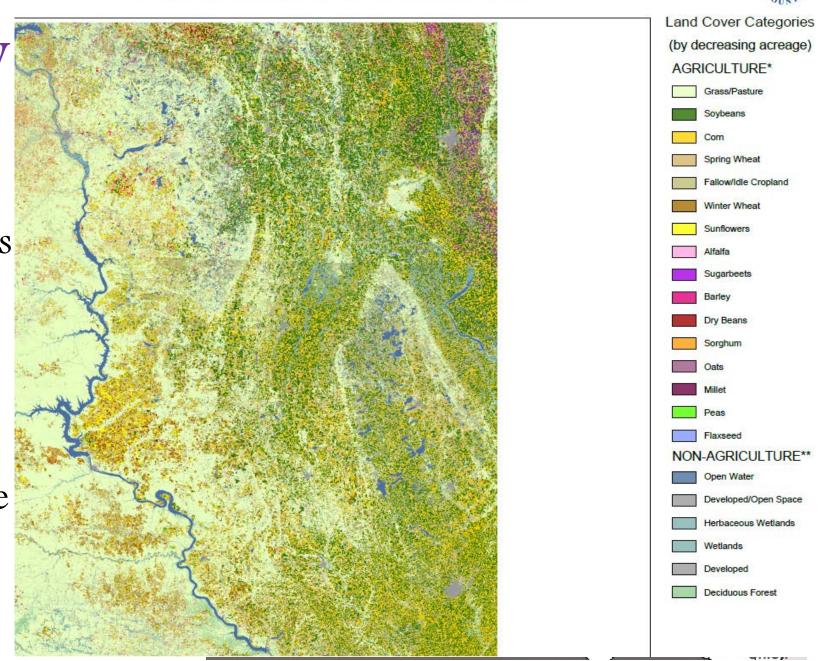

Prairie Pothole Region

Source:
USDA
National
Resources
Conservation
Service

Land conversion in PPR

- Many factors contribute to conversion of grassland to cropland
 - High crop prices
 - Technological advances
 - Risk management tools
 - Changing climatic conditions – may be more favorable for crop production

Surveys of farmers


- Two surveys of farmers in the area, asking about their land conversion decisions
 - ❖2015 mail survey
 - ❖2016 focus group meetings/survey
- Purpose of both was to gain insight into farmers' land use decisions
- ❖ What factors do they consider when converting or not?
- ❖ How important are non-economic factors?

CDL2006 Area of Interest

2015 Survey

- Survey of N. & S. Dakota farmers conducted in 2015
 - Over 1,000 farmers completed the survey
 - 37 SD counties, 20 ND counties represented
 - All but 1 farm were east of Missouri River

☐ Asked farmers about the factors determining land use decisions ☐ Factors broadly categorized into

- □ Prices & policies (Y1–Y2 crop and input prices, Y3 crop insur.,
 - Y4 labor avail.)
- ☐ Technology (Y5 drought-tol. seed, Y6 pest mgmt practices, Y7 yield genetics, Y8 better equipment)
- □Env't concerns (Y9 wildlife, Y10 weather/climate patterns)
- ☐ Farmers were asked whether factors had high, medium, low impact

2015 Survey

Ecological Economics

journal homepage: www.elsevier.com/locate/ecolecon

Determinants of Motives for Land Use Decisions at the Margins of the Corn Belt

Tong Wang ^{a,*}, Moses Luri ^b, Larry Janssen ^a, David A. Hennessy ^c, Hongli Feng ^c, Michael C. Wimberly ^d, Gaurav Arora ^e

^a Dept. of Economics, South Dakota State University, United States

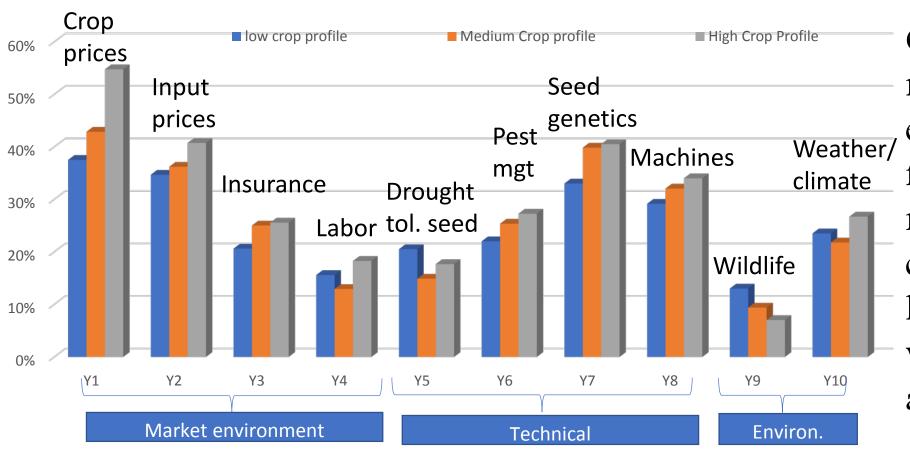
^b School of Economic Sciences, Washington State University, United States

^c Dept. of Agricultural, Food & Resource Economics, Michigan State University, United States

^d Geospatial Sciences Center of Excellence, South Dakota State University, United States

^e Department of Economics, Iowa State University, United States

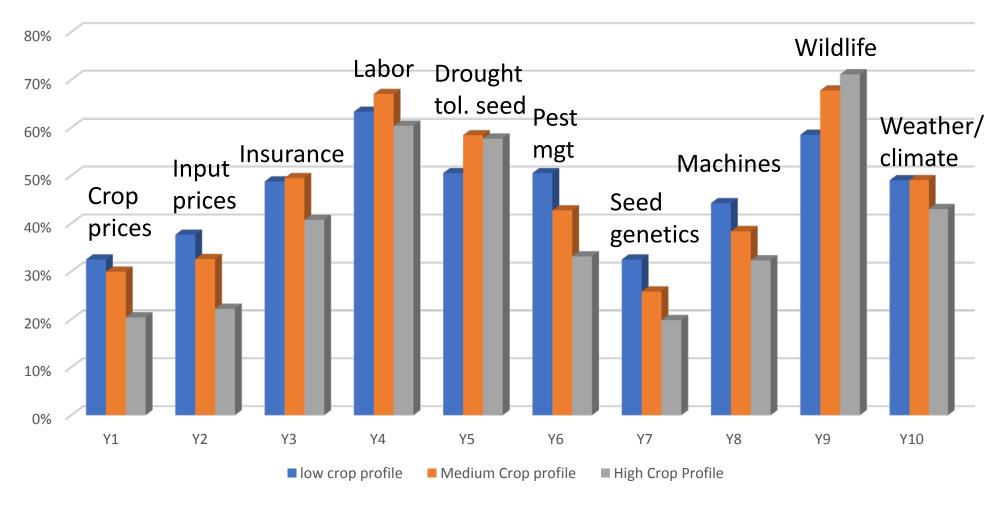
2015 Survey Results Descriptive statistics for the motive variables.


Table 2

 Factors relating to crop
prices and yield
improvement most often
listed as those with the
highest impact on farmers'
land use determinations

• Environmental &
weather/climate concerns
most often having a low
impact. But note rank 7

	Variable	N	Mean
Prices and policy	Y ₁	1010	2.190 1
	Y_2	1002	2.0792
	Y_3	1003	1.788
	Y_4	1004	1.514
Technology	Y_5	1004	1.606
	Y_6	1003	1.838
	Y_7	1006	2.1143
	Y_8	1006	1.9414
Environmental	Y_9	1002	1.416
concerns			
	Y ₁₀	1007	1.766 7


2015 survey results – impact of factors on land use decisions, *STATED HIGH IMPACT*

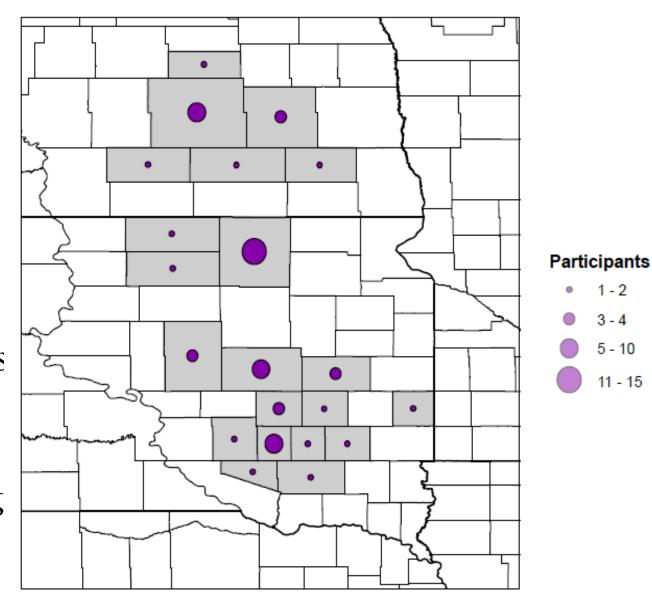
Question: How much impact has each of the following farmrelated issues had on changes you have made in the way you use your agricultural land?

Low profile: < 50% land in crops, high profile ≥90% in crops

2015 survey results – impact of factors on land use decisions, *STATED LOW IMPACT*

Low profile: <50% land in crops, high profile ≥90% in crops

2015
Survey, Table 5
Ordered logit model regression results on environment queries.


Weather	Variables	Improving wildlife habitat, Y_9	Changing weather/climate patterns, Y_{10}
• Hidden in	Intercept 3	-13.430*	- 13.162
accrecate	Intercept 2	-11.876*	- 11.832
aggregate	% LCC = 4, 1 mile radius	0.002	0.004
weather	% slope ≤ 3, 1 mile radius	0.000	0.003**
response	Farm size (1000 acres)	-0.004	-0.001
•	Tenancy index	0.022	0.076
is clear	Age	-0.042	-0.051
south-	Latitude	-0.072	0.179***
	Longitude	0.148**	0.037
north	Percent concordant	53.2	58.2
gradient	Note: One, two and three stars r	epresent, respectively, 109	%, 5% and 1% levels of statistical

Note: One, two and three stars represent, respectively, 10%, 5% and 1% levels of statistical significance.

10

2016 survey

- Subsequent survey conducted in early 2016
 - Focus of second survey was farmers' land use decisions
- Survey was conducted at focus group meetings with ~20 farmers in each location
- All meeting locations were along James River Valley, in areas of hig grassland to cropland conversion in recent years

2016 survey

- Survey asked farmers about
 - Farm characteristics
 - Farming practices
 - Land conversion in the preceding ten years (since 2006)
- Farmers were asked open-ended questions about what they consider when making land use and land conversion decisions
- Also collected information on conversion costs
 - Reliable estimates unavailable from other sources
 - Allow for estimates of returns to conversion

2016 survey – summary

- >76 farmers attended
- Almost 60% had converted some of their land from either CRP or grass to cropland in preceding ten years (45 of 76)
- >27% had converted grassland to cropland (21 of 76 participants)
 - Converted land had been in grass for an average of 29 years
 - ➤ 6 instances of native grassland conversion
 - Mean/median parcel size 269/153 ac. (range, 10–2,500 ac. Mean = 153 ac. if 2,500 parcel removed)

Conversion costs, (Jim Faulstich 2011 comment)

§(Converted) Conversion costs for land converted, previous 10 years §(Didn't) Costs estimates for land they would be most likely to convert

	Mean per acre conversion cost
CRP to crop	\$74.15
Grass to crop	\$85.73

§ Conversion costs broken down (labor, capital, etc.)

	Labor	Equipment	Materials	Other
CRP to crop	\$15.10	\$33.42	\$26.69	\$18.78
Grass to crop	\$15.41	\$36.35	\$30.74	\$22.70

Change in land value after conversion

	Change in land value	Change in rental value	Change in net returns
CRP to crop	\$862	\$72	\$79
Grass to crop	\$1,254	\$79	\$120

	Mean per acre conversion cost
CRP to crop	\$74.15
Grass to crop	\$85.73

- § Reported conversion costs much less than increase in land value
- § Conversion costs could be recovered in ~ 1 year!!!!

Net present value of changes in land value upon conversion

Reported changes in land value imputed from NPV model and change in net returns, using their reported 4.8% interest rate to discount

	Perpetuity
CRP to crop	\$1,563
Grass to crop	\$2,651

S County level estimates, from rental values in Janssen et al. 2015 land value report

	Perpetuity
Low prod. crop less high prod. hay	-\$839
Low prod. crop less high prod. range	-\$86

Importance of factors

	Mean comment frequency			
	CRP to crop		Grass to crop	
	Converted	Didn't	Converted	Didn't
Profit/other economic concerns	0.87	0.82	1.10**	0.73**
Land characteristics	0.53	0.67	0.33**	0.76**
Farm operation needs	0.20	0.30	0.29	0.27
Stewardship	0.27	0.21	0.24	0.22
Lifestyle	0.13	0.20	0.19	0.18
Soil quality	0.07	0.16	0.14	0.15
Risk	0.00*	0.15*	0.10	0.13
Wildlife protection	0.07	0.11	0.10	0.11
Landlord	0.02***	0.20***	0.10	0.04
Other	0.13	0.07	0.05	0.14

Probability of converting

	CRP to crop	Grass to crop
Total farm acres (/1000)	0.072***	0.048**
Years farming (/10)	0.082	-0.098**
Education	0.093*	-0.153**
Importance of non-profit factors	-0.051	-0.057
All or majority acres owned	0.030	0.107
All or majority acres leased	0.199***	0.106
Comment frequency		
Profit	-0.014	-0.007
Stewardship	-0.254**	-0.178***
Lifestyle	-0.110*	-0.070
Land characteristics	-0.140**	-0.129*
Observations	61	68 18

Comparisons

- □ Results from 2015 and 2016 surveys are consistent
 - ☐ Profit and other economic factors reported to have the most influence on farmers' land conversion decisions
 - ☐ Concern for wildlife/environment reported to be comparatively less important
- ☐ Farmers who have not converted land to cropland suggest that land quality/cultivation potential is main impediment
- □ Also consistent with 2015 survey marginal land more responsive to economic factors
- ☐ Stewardship weighs heavily on minds of many

Conversion decision Profit comparisons vs. actions

		Profit maximizing action	
		Convert	Not convert
Actual action	Convert	Observed	Not observed
	Not convert	Observed	Observed

Policy Issues

- This reluctance has to do with stewardship and not wildlife or ecological concerns. How to manage it to better address public policy goals?
- ☐ Care is needed. Need to understand motives. Programs that seek to monetize a matter of values may backfire.
- ☐ Casual view of how USFWS easement managers do it is that they do quite a good job in these areas.

Thank you.

Contact: hennes64@msu.edu

Questions?